Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertension ; 80(6): 1297-1310, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37092338

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is associated with aberrant sympathoexcitation leading to right ventricular failure (RVF), arrhythmias, and death. Microglial activation and neuroinflammation have been implicated in sympathoexcitation in experimental PH. We recently reported the first evidence of thoracic spinal cord (TSC) neuroinflammation in PH rats. Here, we hypothesize that PH is associated with increased cardiopulmonary afferent signaling leading to TSC-specific neuroinflammation and sympathoexcitation. Furthermore, inhibition of TSC neuroinflammation rescues experimental PH and RVF. METHODS: We performed transcriptomic analysis and its validation on the TSC of monocrotaline (n=8) and Sugen hypoxia (n=8) rat models of severe PH-RVF. A group of monocrotaline rats received either daily intrathecal microglial activation inhibitor minocycline (200 µg/kg per day, n=5) or PBS (n=5) from day 14 through 28. Echocardiography and right ventricle-catheterization were performed terminally. Real-time quantitative reverse transcription PCR, immunolocalization, microglia+astrocyte quantification, and terminal deoxynucleotidyl transferase dUTP nick end labeling were assessed. Plasma catecholamines were measured by ELISA. Human spinal cord autopsy samples (Control n=3; pulmonary arterial hypertension n=3) were assessed to validate preclinical findings. RESULTS: Increased cardiopulmonary afferent signaling was demonstrated in preclinical and clinical PH. Our findings delineated common dysregulated genes and pathways highlighting neuroinflammation and apoptosis in the remodeled TSC and highlighted increased sympathoexcitation in both rat models. Moreover, we validated significantly increased microglial and astrocytic activation and CX3CL1 expression in TSC of human pulmonary arterial hypertension. Finally, amelioration of TSC neuroinflammation by minocycline in monocrotaline rats inhibited microglial activation, decreased proinflammatory cytokines, sympathetic nervous system activation and significantly attenuated PH and RVF. CONCLUSIONS: Targeting neuroinflammation and associated molecular pathways and genes in the TSC may yield novel therapeutic strategies for PH and RVF.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Minociclina/farmacología , Minociclina/uso terapéutico , Enfermedades Neuroinflamatorias , Monocrotalina , Hipertensión Pulmonar Primaria Familiar , Médula Espinal , Modelos Animales de Enfermedad
2.
J Am Heart Assoc ; 9(2): e012063, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31914876

RESUMEN

Background Recently, we and others have reported a causal role for oxidized lipids in the pathogenesis of pulmonary hypertension (PH). However, the role of low-density lipoprotein receptor (LDL-R) in PH is not known. Methods and Results We examined the role of LDL-R in the development of PH and determined the efficacy of high-density lipoprotein mimetic peptide 4F in mitigating PH. Explanted human lungs and plasma from patients with PH and control subjects were analyzed for gene expression, histological characteristics, and lipoprotein oxidation. Male LDL-R null (LDL-R knockout) mice (12-15 months old) were fed chow, Western diet (WD), WD with 4F, and WD with scramble peptide for 12 weeks. Serial echocardiography, cardiac catheterization, oxidized LDL assay, real-time quantitative reverse transcription-polymerase chain reaction, and histological analysis were performed. The effect of LDL-R knockdown and oxidized LDL on human pulmonary artery smooth muscle cell proliferation was assessed in vitro. LDL-R and CD36 expression levels were significantly downregulated in the lungs of patients with PH. Patients with PH also had increased lung lipid deposits, oxidized LDL, E06 immunoreactivity, and plasma oxidized LDL/LDL ratio. LDL-R knockout mice on WD developed PH, right ventricular hypertrophy, right ventricular dysfunction, pulmonary vascular remodeling, fibrosis, and lipid deposition in lungs, aortic atherosclerosis, and left ventricular dysfunction, which were prevented by 4F. Interestingly, PH in WD group preceded left ventricular dysfunction. Oxidized LDL or LDL-R knockdown significantly increased proliferation of human pulmonary artery smooth muscle cells in vitro. Conclusions Human PH is associated with decreased LDL-R in lungs and increased oxidized LDL in lungs and plasma. WD-fed LDL-R knockout mice develop PH and right ventricular dysfunction, implicating a role for LDL-R and oxidized lipids in PH.


Asunto(s)
Hemodinámica , Hipertensión Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Receptores de LDL/metabolismo , Remodelación Vascular , Animales , Apolipoproteína A-I/farmacología , Antígenos CD36/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Hemodinámica/efectos de los fármacos , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Lipoproteínas LDL/metabolismo , Masculino , Ratones Noqueados , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Receptores de LDL/genética , Transducción de Señal , Remodelación Vascular/efectos de los fármacos , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...